Proposals in Bottlenecks

Yu Yang

20160818
Agenda

- Bottlenecks Colorado Discuss
 - Colorado Release Report
 - Colorado Milestones
 - Release Meeting Report
 - Bottlenecks Colorado Testing Framework (Rubbos example)
- Proposals in Bottlenecks (Draft)
 - Goals and Scope (Draft)
 - The Proposals (Draft)
 - Metrics & Tools Discussion
Bottlenecks Colorado Discussion

- August 15-22, Milestone window period
- MS9: Stable branch created
 - Projects are branched from main
 - Commits are limited to critical issues
 - Commits must be cherry-picked
- MS10: Documentation completed
 - Updated
 - Reviewed
 - Verified
 - Committed to repo
 - **Note:** DOES NOT include test results (see "Formal test execution completed" below)
Bottlenecks Colorado Discussion

• Colorado Release Meeting 0816
 – Discussion of Release Meeting
 • release meeting next week during LinuxCon
 • stable branch and release participation
 • Documentation
 • scenario status
Bottlenecks Colorado Discussion

- Bottlenecks
 - cli
 - config
 - docs
 - testsuite
 - rubbos
 - puppet_manifests
 - rubbos
 - rubbos.conf
 - run_rubbos_internal.sh
 - modules
 - params
 - rubbos_client
 - rubbos_common
 - rubbos_file
 - rubbos_mon
 - site_off.pp
 - site_on.pp
 - rubbos_script
 - testcase.cfg
 - testsuite_story
 - run_rubbos.py
 - utils
 - .gitignore
 - .gitreview
 - common.sh
 - INFO
 - LICENSE
 - requirements.txt
 - run_tests.sh

- Jump Server
 - run_rubbos.py

- Rubbos Controller
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7

- DUT
 - client
 -
 - client

- Web Server
 - Application Server
 - Database Server

- Git Repo
- Artifacts Repo
- DB for dashboard
- dashboard

 NFV Infrastructure

I: vm ready
II: run_rubbos_internal.sh

Goals and Scope (Draft)

• **Goals**
 - Enhance interaction with other project
 - Feedback development suggestions to upstream
 - Improve the performance of OPNFV reference platform

• **Scope**
 - OPNFV Testing projects
 - OPNFV Feature projects
 - Modeling (Profile the testing behaviors), Testing and Data analysis
 - Parameters choosing and Algorithms
Proposals in Bottlenecks (Draft)

1. Classified bottlenecks

2. Feedback bottlenecks

3. Upstream Develop

4. Performance Improvement

Test Cases

Test Results

- Network
- Storage
- Compute
- Middleware
- APP

Bottlenecks Testing Results

OPNFV Reference Platform
Metrics & Tools Discussion

• Metrics
 – Metrics Set for Specific Bottlenecks
 – Feature testing results could be organized into different metrics sets to find the bottlenecks

• Tools
 – Compute: latency, utilization of CPU, cache size, etc.
 – Network: throughput, number of connection, packet delay, etc.
 – Storage: memory available mbytes, pages/sec, idle time, etc.
 – Midware: concurrent request, response speed, throughput, etc.
 – APP: scale in/out, scale up/down, throughput, latency, etc.
Metrics from Yardstick

<table>
<thead>
<tr>
<th>Performance/Speed</th>
<th>Capacity/Scale</th>
<th>Reliability/Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Latency for random memory access</td>
<td>- Number of cores and threads</td>
<td>- Processor availability (Error free processing time)</td>
</tr>
<tr>
<td>- Latency for cache read/write operations</td>
<td>- Available memory size</td>
<td>- Memory availability (Error free memory time)</td>
</tr>
<tr>
<td>- Processing speed (instructions per second)</td>
<td>- Cache size</td>
<td>- Processor mean-time-to-failure</td>
</tr>
<tr>
<td>- Throughput for random memory access (bytes per second)</td>
<td>- Processor utilization (max, average, standard deviation)</td>
<td>- Memory mean-time-to-failure</td>
</tr>
<tr>
<td></td>
<td>- Memory utilization (max, average, standard deviation)</td>
<td>- Number of processing faults per second</td>
</tr>
<tr>
<td></td>
<td>- Cache utilization (max, average, standard deviation)</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Throughput per NFVI node (frames/byte per second)</td>
<td>- Number of connections</td>
<td>- NIC availability (Error free connection time)</td>
</tr>
<tr>
<td>- Throughput provided to a VM (frames/byte per second)</td>
<td>- Number of frames sent/received</td>
<td>- Link availability (Error free transmission time)</td>
</tr>
<tr>
<td>- Latency per traffic flow</td>
<td>- Maximum throughput between VMs (frames/byte per second)</td>
<td>- NIC mean-time-to-failure</td>
</tr>
<tr>
<td>- Latency between VMs</td>
<td>- Maximum throughput between NFVI nodes (frames/byte per second)</td>
<td>- Network timeout duration due to link failure</td>
</tr>
<tr>
<td>- Latency between NFVI nodes</td>
<td>- Network utilization (max, average, standard deviation)</td>
<td>- Frame loss rate</td>
</tr>
<tr>
<td>- Packet delay variation (jitter) between VMs</td>
<td>- Number of traffic flows</td>
<td></td>
</tr>
<tr>
<td>- Packet delay variation (jitter) between NFVI nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sequential read/write IOPS</td>
<td>- Storage/Disk size</td>
<td>- Disk availability (Error free disk access time)</td>
</tr>
<tr>
<td>- Random read/write IOPS</td>
<td>- Capacity allocation (block-based, object-based)</td>
<td>- Disk mean-time-to-failure</td>
</tr>
<tr>
<td>- Latency for storage read/write operations</td>
<td>- Block size</td>
<td>- Number of failed storage read/write operations per second</td>
</tr>
<tr>
<td>- Throughput for storage read/write operations</td>
<td>- Maximum sequential read/write IOPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Maximum random read/write IOPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Disk utilization (max, average, standard deviation)</td>
<td></td>
</tr>
</tbody>
</table>