Proposals in Bottlenecks

Yu Yang

20160824
Agenda

• Bottlenecks Colorado Discuss
 • Colorado Release Report
 • Colorado Stable Branch
 • Release Meeting Report
 • Bottlenecks Colorado Testing Framework (Rubbos example)
• Proposals in Bottlenecks (Draft)
 • Goals and Scope (Draft)
 • The Proposals (Draft)
 • Metrics & Tools Discussion (Draft)
 • Work Plan Discussion for the proposal (Draft)
Bottlenecks Colorado Discussion

- August 15-22, Milestone window period
- MS9: Stable branch created
 - Projects are branched from main
 - Commits are limited to critical issues
 - Commits must be cherry-picked
- MS10: Documentation completed
 - Updated
 - Reviewed
 - Verified
 - Committed to repo
 - Note: DOES NOT include test results (see "Formal test execution completed" below)
Bottlenecks Colorado Discussion

• Colorado Release Meeting 0816
 – Discussion of Release Meeting
 • stable branch
 • documentation
 • scenario status
 • Colorado 2.0 and 3.0 milestone planning
Bottlenecks Colorado Discussion

- Bottlenecks
 - ci
 - config
 - docs
 - tests
 - rubbos
 - puppet_manifests
 - rubbos
 - rubbos.conf
 - run_rubbos_internal.sh
 - modules
 - params
 - rubbos_client
 - rubbos_common
 - rubbos_httpd
 - rubbos_monitor
 - rubbos_mysql
 - rubbos_tomcat
 - site_off.pp
 - site_on.pp
 - rubbos_scripts
 - testcase.cfg
 - testsuite_story
 - run_rubbos.py
 - utils
 - .gitignore
 - gitreview
 - common.sh
 - INFO
 - LICENSE
 - requirements.txt
 - run_tests.sh

Jump Server

Run Rubbos Controller

Git Repo

Artifacts Repo

DB for dashboard

dashboard

DUT

Web Server

Application Server

Database Server

NFV Infrastructure
Goals and Scope (Draft)

- **Goals**
 - Enhance interaction with other project
 - Feedback development suggestions to upstream
 - Improve the performance of OPNFV reference platform

- **Scope**
 - OPNFV Testing projects
 - OPNFV Feature projects
 - Modeling (Profile the testing behaviors), Testing and Data analysis
 - Parameters choosing and Algorithms
Proposals in Bottlenecks (Draft)

3. Upstream Develop

- SFC
- IPv6
- SDNVPN
- ARMBAND
- OVS4NFV

1. Classified bottlenecks

Bottlenecks

- Test Cases
- Test Results
 - Network
 - Storage
 - Compute
 - Middleware
 - APP

Bottlenecks Testing Results

2. Feedback bottlenecks

4. Performance Improvement

OPNFV Reference Platform
Metrics & Tools Discussion (Draft)

• Target
 – Metrics Set for Specific Bottlenecks
 – Feature testing results could be organized into different metrics sets to find the bottlenecks

• Monitoring
 – Compute: latency, utilization of CPU, cache size, etc.
 – Network: throughput, number of connection, packet delay, etc.
 – Storage: memory available mbytes, pages/sec, idle time, etc.
 – Middleware: concurrent request, response speed, throughput, etc.
 – APP: scale in/out, scale up/down, throughput, latency, etc.
Metrics from Yardstick

<table>
<thead>
<tr>
<th></th>
<th>Performance/Speed</th>
<th>Capacity/Scale</th>
<th>Reliability/Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute</td>
<td>- Latency for random memory access</td>
<td>- Number of cores and threads</td>
<td>- Processor availability (Error free processing time)</td>
</tr>
<tr>
<td></td>
<td>- Latency for cache read/write operations</td>
<td>- Available memory size</td>
<td>- Memory availability (Error free memory time)</td>
</tr>
<tr>
<td></td>
<td>- Processing speed (instructions per second)</td>
<td>- Cache size</td>
<td>- Processor mean-time-to-failure</td>
</tr>
<tr>
<td></td>
<td>- Throughput for random memory access (bytes per second)</td>
<td>- Processor utilization (max, average, standard deviation)</td>
<td>- Memory mean-time-to-failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Memory utilization (max, average, standard deviation)</td>
<td>- Number of processing faults per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cache utilization (max, average, standard deviation)</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>- Throughput per NFVI node (frames/byte per second)</td>
<td>- Number of connections</td>
<td>- NIC availability (Error free connection time)</td>
</tr>
<tr>
<td></td>
<td>- Throughput provided to a VM (frames/byte per second)</td>
<td>- Number of frames sent/received</td>
<td>- Link availability (Error free transmission time)</td>
</tr>
<tr>
<td></td>
<td>- Latency per traffic flow</td>
<td>- Maximum throughput between VMs (frames/byte per second)</td>
<td>- NIC mean-time-to-failure</td>
</tr>
<tr>
<td></td>
<td>- Latency between VMs</td>
<td>- Maximum throughput between NFVI nodes (frames/byte per second)</td>
<td>- Network timeout duration due to link failure</td>
</tr>
<tr>
<td></td>
<td>- Latency between NFVI nodes</td>
<td>- Network utilization (max, average, standard deviation)</td>
<td>- Frame loss rate</td>
</tr>
<tr>
<td></td>
<td>- Packet delay variation (jitter) between VMs</td>
<td>- Number of traffic flows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Packet delay variation (jitter) between NFVI nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>- Sequential read/write IOPS</td>
<td>- Storage/Disk size</td>
<td>- Disk availability (Error free disk access time)</td>
</tr>
<tr>
<td></td>
<td>- Random read/write IOPS</td>
<td>- Capacity allocation (block-based, object-based)</td>
<td>- Disk mean-time-to-failure</td>
</tr>
<tr>
<td></td>
<td>- Latency for storage read/write operations</td>
<td>- Block size</td>
<td>- Number of failed storage read/write operations per second</td>
</tr>
<tr>
<td></td>
<td>- Throughput for storage read/write operations</td>
<td>- Maximum sequential read/write IOPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Maximum random read/write IOPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Disk utilization (max, average, standard deviation)</td>
<td></td>
</tr>
</tbody>
</table>
A Brief List of Metrics and Tools (Draft)

<table>
<thead>
<tr>
<th>Category</th>
<th>Bottlenecks</th>
<th>Metrics Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M&T List</td>
<td></td>
<td>https://cloud.google.com/monitoring/api/metrics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.applicationperformancemanagement.org/network-monitoring/...</td>
<td></td>
</tr>
<tr>
<td>Compute</td>
<td>Short of Processor</td>
<td>(System%Total processor time, Processor %Processor Time, system\Processor Queue Length)</td>
<td>Metrics 2 is for SQL Server
PPT is to avoid memory shortage
SPQL is to trace LB of processors</td>
</tr>
<tr>
<td></td>
<td>latency</td>
<td>reponse time</td>
<td>Metrics 1 is for web server
Metrics 2 is for
where the network congestion occur and throuput reaches it bottleneck</td>
</tr>
<tr>
<td></td>
<td>throughput</td>
<td>(reponse time, %package loss)</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>Short of Memory (Memory Available MBytes)</td>
<td>(Page Reads/Sec, Page/Sec)</td>
<td>PS is not necessarily lack of memory when it is high, maybe an application sequentially reading a memory mapped file</td>
</tr>
<tr>
<td></td>
<td>memory leak (Memory Available MBytes)</td>
<td>(%Disk Time, Page Reads/Sec, Avg.Disk Queue Length)</td>
<td>Short of memory will cause using Disk Cache</td>
</tr>
<tr>
<td></td>
<td>I/O</td>
<td>(PhysicalDisk/%Disk time, PhysicalDisk/%Idle Time, Physical Disk\Avg.Disk Queue Length, Disk sec/Transfer)</td>
<td>Only DT is high, then Disk is not the bottlenecks. PRS is to avoid memory shortage</td>
</tr>
</tbody>
</table>

More are under discussion and planned to develop
Work Plan Discussion for the proposal (Draft)

- Adding testing suite to Bottlenecks projects
 - Jenkins job and proposed test suite
 - Code structure in the Bottlenecks repo
- Determine metrics set and tools for the initial setup
 - Compute: Short of Processor
 - Network: bandwidth, latency and throughput
 - Storage: Short of Memory, memory leak, I/O
Work Plan Discussion for the proposal (Draft)
Some Storage Metrics

- **Capacity utilisation**: in terms of percent/GB of space used, as well as subcategories such as raw, formatted, free, allocated or allocated not used
- I/O per second (IOPS)
- Bandwidth
- **Latency**
- Access time: read, write, random
- **Energy usage**: from macro (subsystem) to micro (device or component)
- **Mean time between failure (MTBF)**
- Mean time to repair or replace (MTTR) failed subsystems/components
- **Recovery point objective (RPO)**: The point in time to which you want data restored
- **Recovery time objective (RTO)**: The time period in which data to the point required by the RPO must be restored.