
Cloud Native

OPNFV Cloud Native Working Group Proposal

Scope of the new " "OPNFV Cloud Native Working Group
Serve as a forum to coordinate among all projects working on cloud native initiatives and drive for common goals and strategies
Serve as a common bridge with CNCF, ONAP/LFN, edge and other relevant communities. Represent OPNFV to work with these
communities as a liaison and/or on joint initiatives.
Provide periodic updates to TSC

Work items and objectives of the new " "OPNFV Cloud Native Working Group
Initial work item / starting point:

Create a "world map of cloud native in OPNFV" (short presentation) - document cloud-native related OPNFV projects and
efforts, their current status as well as plans.
Outline how these projects fit into the larger cloud-native ecosystem / articulate relationships to other projects (e.g. CNCF) /
identify opportunities for future work.

Establish a cloud native CD toolchain and process
Drive commonalities among OPNFV k8s scenarios. Produce common Kubernetes scenarios (e.g. two) with long-live community
environment
Work with projects (initially select a few) to help them

produce cloud native artifacts
adopt cloud native tools and practices
adapt/expand to support cloud native environments

Ensure new projects include cloud native where appropriate
Establish robust connection and engagement with upstream CNCF, ONAP/LFN, edge and other communities
Support multi-clouds based on k8s: e.g. ONAP, edge, public clouds
Drive longer term efforts: e.g. common API, service mesh, ‘middle-box’ data path, acceleration, edge support, etc.
Produce user oriented and developer oriented training material

We propose to identify some low hanging fruits for initial goals, and at the same time start to formulate and drive some of the longer term objectives.
Meeting time can be shared among the main projects involved to reduce overlap and may choose two alternating time zones to accommodate more
participants. May look into existing WGs (Infra, Testing WG) for more best practices.
3) Ask from TSC

Creation of a WG with the defined scope and proposed work items
Current task force members to kick start the WG, WG is open to everyone interested in participating.

PS: Recommendation summary deck previously presented to TSC: Cloud native WG recommendations.pdf
==============================

Objectives:

OPNFV started the open source NFV journey largely based on a VM approach, specifically Openstack. This approach means more than just VM as basis
of virtual compute unit, but also the implies a "virtual appliance" model. This model influences the overall architecture, software and service design
philosophy in many aspects beyond the choice of hypervisors. Supporting cloud native for NFV, therefore, means supporting ALL of the following three
aspects (as defined by CNCF and others):

1) Supporting containers,

2) Supporting management and automation of containerized software

3) Supporting micro-service model of software

More background information can be found in this ONS Technical Forum (March 2018, Los Angeles, CA)Presentation.

These three aspects are inter-linked closely in order to fully realize the benefits of cloud native paradigm for NFV. Therefore, our overarching objective is to
integrate best of breed cloud native software solutions and best practices for supporting cloud native deployment of NFV solutions for all end users and
high priority use cases. Specifically,

1) Container and container management

Various types of container implementations
Other light weight compute choices e.g. kata, virtlet, unikernels
Performance, security, other aspects of container improvement
Storage support in the cloud native environment
Orchestration : Kubernetes (auto deployment, scaling, management etc.), Kubernetes + Openstack (including Kubernetes on Openstack, and
other variations)
Integration of these upstream components
Goal is to move the integration process to XCI style continuous integration with both Openstack and Kubernetes

 Currently the integration and testing work happens in several tracks within OPNFV

container4nfv, working with Compass and Joid, produces a number of artifacts in Fraser.

https://wiki.anuket.io/download/attachments/4391983/Cloud%20native%20WG%20recommendations.pdf?version=1&modificationDate=1528224942000&api=v2
#
https://wiki.opnfv.org/display/SWREL/Container4NFV+Release+Plan+for+OPNFV+Fraser

other artifacts, as listed in , by installers (Apex, Compass, Joid). Most are baremetal (ie starting with k8s-*), a few are on top of Fraser status page
openstack (os-odl-k8s-*). See also this .analysis
XCI sandbox supports a Kubernetes based deployment (see).xci sandbox doc
most of current configurations are experimental to add special support/features to kubernetes and are for developers in nature - these are all very
important work. However, we also need to support many (probably majority) users who only want a convenient Kubernetes configuration that they
can use and has been tested in the LFN community for networking related use cases.

Recommendation #1:

Establish a coordinated effort to produce a common configuration that can be jointly tested and promoted into a high quality system that is consumable to
(a) users who seek convenience for NFV use cases (b) developers/users in other projects who can leverage OPNFV's work (e.g. ONAP) (c) other
developers who want to build other higher layer software on the top.

Focus on two main configurations: Kubernetes baremetal and Kubernetes on top of Openstack.

Sync with the ongoing efforts of consolidation through XCI and converge on a common set.

2) Container networking

There are many aspects of container networking, some involve VNF data path, but many don't. (Note: the phrase "data path" is ambiguous).
For the normal case, we should stay fully faithful to Kubernetes and CNCF, and participate in the ongoing efforts there (upstream first). This
should be our baseline in producing a consumable Kubernetes configuration (see Recommendation #1). container4nfv, e.g., supports CNI and

, multus, SRIOV etc.plug-ins
For the "bump-in-the-wire" case, a.k.a "middle box", various acceleration designs have been proposed/developed, OPNFV should work with
related projects to test/validate their applicability with respect to solving user's demonstrated requirements. Some of these are based on ongoing
data path work within OPNFV and projects within LFN (e.g. ligato/FD.IO in user space), and others in open source community (e.g. Linux BPF in
kernel space). See a separate bullet below to distinguish this case. These acceleration methods are critical to many NFV use cases, but we
should not mix importance with maturity, the promotion of these features should be gated with a neutral set of test cases. Doing so is not to
demote its importance, but to give space and freedom in its development so those projects can move faster.
We are not here to "choose", but provide a consistent validation process to test features, gauge maturity, and help down-stream to consume
these features in an easier way. All solutions demonstrated benefits and maturity should be promoted to the same level.

Recommendation #2:

Encourage testing projects to develop consistent test methodologies for container networking. Build these test methods into CI/CD/XCI test and promotion
pipeline (see Recommendation #1).

Encourage OPNFV integration projects and the upstream projects to integrate and test data path features/acceleration in OPNFV to enhance networking
stack for all of the LFN community.

Encourage benchmarking of performances of various networking solutions for OPNFV use cases, e.g. Clover is trying to use tools like vsPerf and others
like jMeter to conduct explainable benchmarking.

3) Micro-services support

Micro-service service mesh
Micro-service visibility/data collection and analysis, and related tools and automation methods
Tools for best practice of micro-services
Software (micro-services) components commonly needed for NFV use cases
Test methodologies and tools in the micro-service/cloud native approach
The micro-service framework is applicable to many aspects of NFV software ecosystems, including containerized sample VNFs, test tools,
measurement tools, other management/control or applications, e.g. ONAP.

Recommendation #3:

The work here has been started in the . We encourage more community participation in advancing these goals.Clover project

Encourage containerized software, in OPNFV and across LFN, to adopt micro-service architecture supported by a feature rich high performance service
mesh.

4) Cloud native continuous deployment (CD)

To disambiguete Continuous Deployment from Contiguous Delivery and Contiguous Integration, please use this .Atlassin definition

One of the integral part of being cloud native software is its continuous deployment (Note: Continuous Deployment is a distinct process from the
general CI/CD discussion in OPNFV.)
We should extend current CI (strictly speaking XCI is still CI, just for clarification of terminology) to new CD for cloud native software. See this
proposal from the ONS Technical Forum: .Extending CI/CD to support Cloud Native VNFs and Operations
Note that this toolchain works for both containers and VMs - one can adopt this style of CD for VM as well - however, the initial objective should
be focused on container first.

https://wiki.opnfv.org/display/SWREL/Fraser+Scenario+Status
https://wiki.opnfv.org/display/OpenRetriever/Analyzis+of+architecture+options
http://docs.opnfv.org/en/latest/submodules/releng-xci/docs/xci-user-guide.html#flavor-layouts-kubernetes-based-deployments
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://wiki.opnfv.org/display/CLOV
https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd
#

Will require "long lasting computing resources" - this can be current UNH pods being allocated for this purpose, Pharos-pods dedicated for this
purpose, virtual public cloud (GCE, AWS, ...) paid for for this purpose, or new resources.
The Clover project is currently building the software tools and automated tests that implement this CD pipeline. The first step of long running
testbed is being prepared for Gambia.

Recommendation #4:

Continuous deployment is an integral part of being cloud native. Encourage participation to Clover project to establish a CD tool and process during
Gambia and general use thereafter.

Link XCI and CD together for a complete cloud native CI/CD.

Consider to dedicate a POD in UNH LaaS to be OPNFV's long running testbed.

5) Support for "MiddleBox" Network Functions

While the adoption of technologies like the Micro-Services (number 3 above) are very well suited to services that operate at layer 7 (such as management
and control functions), the interface to these service meshes does not provide access to the entire raw packet which is necessary for many data plane
functions.

There needs to be support for a different framework to support L3/4 functions, such that packet headers can be inspected and appropriate action taken.
Examples would be vCPE or vEPC.

In addition these network functions often need to be able to be connected in a logical sequence. In an OpenStack / VM based environment this would be
called a Service Function Chain, but we won't use this term as it may implpy a certain implementation. ETSI uses the term VNF Forwarding Graph, and
this kind of logical sequence of functions is required, regardless of how it is implemented.

Recommendation #5:

Review existing open source projects to achieve the needs of a middlebox network function. An example, implemented in user space, would be Ligato,
which makes use of (see). Another example, implemented in kernel space, is eBPF and related project or solution like fd.io https://github.com/ligato ioVisor

.Cilium

6) Concrete use cases and sample applications

Use case driven (user/customer driven) is an important way to make OPNFV more relevant to customer needs and be more "consumable".
Work cross project to identify common priority use cases. Future deployment should be a focus for us as today's commercial deployment has yet
to adopt cloud native in large scale.
One of the outcome of these sample VNFs should be a best practice document helping the community/vendors/customers understand the
challenges involved and best methodology of moving to cloud native.
It will be greatly beneficial is projects within LFN, and other related upstream projects, can share work on use cases and examples. Specifically,
we should join forces in creating cloud native use cases.

Recommendation #6:

Work across projects to create a set of common use cases that reflect shared market requirements.

7) Cross project collaborations

Eat your own dog food. Encourage OPNFV projects consider containerizing their artifacts, supporting testing containerized solutions, adopting CI
/CD, and service mesh.
ONAP also aims to move to cloud native. We need to position OPNFV in helping ONAP achieve their goals without unnecessary replication.
Auto project is working on running ONAP on OPNFV VIM. It will be beneficial to run ONAP as a cloud native application on OPNFV's cloud native
infrastructure.
FD.IO has goals in high performance data path for cloud native VNFs. We should investigate best way to integrate that as one of the acceleration
methods.
Akraino, a new LF project, is starting to work on edge software stack to support use cases in enterprise, IoT and operators that will have similar
needs.
The CD (continuous deployment) initiative is applicable for all projects within LFN, and related to upstream (CNCF, Openstack), and compliments
to the XCI initiative, Lab-as-a-service/Pharos etc.
Cloud native is a general theme that we should push together in LFN.

Recommendation #7:

Encourage OPNFV projects consider containerizing their artifacts, supporting testing containerized solutions, adopting CI/CD, and service mesh.

OPNFV should take a lead to drive a LFN cloud native initiative.

Related projects in OPNFV:

Projects in OPNFV are currently working towards at least part of the above objectives: (please suggest addition of anything missed out)

http://fd.io
https://github.com/ligato
https://www.iovisor.org/
https://github.com/cilium/cilium

Container4nfv (formerly OpenRetriever): Container4NFV
Focuses on containers, kubernetes

Clover: https://wiki.opnfv.org/display/CLOV
Focuses on micro-services management, service mesh, CI/CD, sample VNF micro-services

XCI: http://docs.opnfv.org/en/latest/infrastructure/xci.html
Focuses on cross-project CI

Auto: ONAP-Automated OPNFV (Auto)
Focuses on ONAP on top of OPNFV's NFVI

Edge cloud: Edge cloud
Focuses on carrier scale edge cloud.

FDS(FD.IO): https://wiki.opnfv.org/display/fds
Several fronts in networking data path

Installer projects that produce Kubernets scenarios: , , Apex Compass Joid
Test projects/ Tesing Working Group - how to reuse test tools for cloud native
Infra Working Group: How to allocate/use infra to support long running micro-services
Doc: in OPNFV and cross LFN projects

===

Raw discussions during zoom meetings are captured in this etherpad: https://etherpad.opnfv.org/p/cnwg

new "OPNFV Cloud Native Working Group"

#
https://wiki.opnfv.org/display/CLOV
http://docs.opnfv.org/en/latest/infrastructure/xci.html
#
#
https://wiki.opnfv.org/display/fds
https://wiki.opnfv.org/display/apex/Apex
https://wiki.opnfv.org/display/compass4nfv/Compass4nfv
https://wiki.opnfv.org/display/joid/JOID+Home
https://wiki.opnfv.org/display/testing/Testing+Ecosystem
https://wiki.opnfv.org/display/INF/Infra+Working+Group
https://etherpad.opnfv.org/p/cnwg

	Cloud Native

